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The propagation path length variation due to-bending of optical fibers is analyzed in
this article. Both the geometric effect and material stress effects are included in the
analysis. These calculations put an upper limit on the expected phase shift in single mode
fibers. The fractional change in propagation consStant is given by
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where a is the core radius of the fiber (either single or multimode), and R is the bending
radius of curvature. Moding effects in multimode fibers cause extraneous phase shifts of
unusually high magnitude. This does not occur in single mode fibers, rendering them very
insensitive to bending with a theoretical limit given by the above relation.

l. Introduction

To transmit a time and frequency standard with accuracies
required for such applications as VLBI (very long baseline
interferometry), both a stable transmission path and a sophisti-
cated electronic compensation system are required. The choice
of a relatively stable transmission medium can greatly alleviate
the stringent requirements for the electronic compensation
system. Contenders for the transmission path include coaxial
system, microwave, and optic-fiber system. Preliminary phase
noise measurements on a 3-km multimode fiber-optics link
indicate that its performance surpasses all of the other avail-
able systems (Ref. 1). It was also observed that bending the
optical fiber introduces noticeable phase shift in the trans-
mitted RF signal. The purpose of this article is to analyze this
phenomenon and to establish a limit on the amount of RF
phase shift introduced due to bending of single-mode fibers.
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This same calculation procedure cannot be applied to multi-
mode fibers. It has been observed experimentally that bending
a multimode fiber introduces unusually high phase shift in the
carried RF signal which cannot be accounted for by changes in
propagation constants alone. The reason, we believe, is due to
moding effects. Multimode fibers carry a large number (several
hundred) of transverse modes, some tightly held, some loosely
held, and some are even cladding modes. These different
modes have different propagation constants (which, in fact, is
the origin of dispersion in multimode fibers). Bending the fiber
causes a redistribution of the power contained in each mode,
with some tightly held modes converted into loosely held or
cladding modes. If these loose modes were allowed to enter
the receiver, a very large phase shift will be observed, because
the effective propagation constant between the receiver and
the point when the bend occurs is changed. However, if the
loosely held or the cladding modes were lost before they enter




the receiver, no effect should be seen on the RF phase shift.
This proposition is supported by the experimental observation
that, while bending the fiber within several hundred meters of
the receiver produces several degrees of phase changes in a
100-MHz RF signal, bending the fiber more than 1 km away
from the receiver does not produce any significant effect on
the phase.

The above phenomenon does not occur in single-mode
fibers because they carry only one mode. Experimentally,
bending a single-mode fiber anywhere along the link does not
produce any noticeable phase shifts on the signal (as observed
with a 100-MHz RF signal on a vector voltmeter with a phase
resolution of 0-1 degree). The analysis below gives an upper
limit on the amount of phase shift expected in single-mode
fibers.

Il. Field Solutions of a Straight Optical Fiber

Figure 1 shows a step-index fiber cross section and the
refractive index variation. Typical core dimension for a multi-
mode fiber is 50 um diameter; for a single-mode fiber it is
about 5 to 10 um diameter. The refractive index difference
(Poore = Mo Dbetween the core and cladding material is
typically of the order of 1073, A multimode fiber supports
hundreds of transverse modes; in a single-mode fiber all but
one of these modes are beyond cutoff. The fundamental mode
(HE,, mode) that propagates in a single-mode fiber theoreti-
cally does not have a cutoff frequency (in contrast to a hollow
metallic waveguide), but for sufficiently low optical frequency
the power contained in the core is so small that for all
practical purposes it can be regarded as beyond cutoff.

Electromagnetic wave propagation inside a dielectric fiber is
governed by the wave equation:

V2E + k%n*(x,y,2)E = 0 ¢))

where E is the electric field vector, n is the refractive index
and %k is the free space propagation constant =2m/\. For
weakly guiding fibers (small difference between cladding and
core index) the fields are very nearly uniformly and linearly
polarized (Ref. 2) so that a scalar wave equation, obtained by
replacing the E vector by a scalar quantity ¥, suffices to
describe the modal behavior. As illustrated in Fig. 1, propaga-
tion is in the y direction, giving rise to a factor e~ in the
field ¢, and the transverse mode pattern can be solved from
Eq. (1) subjected to pertinent boundary conditions. They can
be represented in cylindrical coordinates by the Bessel
functions:
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where r and ¢ are the radial and azimuthed coordinates on a
cross section of the fiber, J, and K| are respectively the Bessel
and modified Bessel functions of order ,/is a positive integer
describing the mode order, and u and w are a pair of param-
eters related to the propagation constant § through a set of
transcendental characteristic equations. These field solutions
have Dbeen extensively computed and well documented
(Refs. 3, 4).

The problem of solving the field inside a bent fiber is
considerably more complicated. The circular symmetry, which
enables closed form solutions to be written down as in the case
of a straight fiber, no longer exists when the fiber is bent.
Previous analyses on bending effects concentrate on radiation
loss (Refs.5, 6). It was shown that such bending loss is
negligible if the bend radius is larger than a few centimeters
(Ref. 3). This would be assumed in the following analysis.

lil. Analysis of a Bent Optical Fiber by
Conformal Transformation

Figure 2 shows a sketch of the top view of a bent fiber.
With the help of conformal transformation (Ref. 7), a bent
section of fiber can be transformed into a straight section with
a modified index of refraction profile. For large radius of bend
curvature, this modified index profile differs only slightly
from the unmodified (straight fiber) one, so that a perturba-
tion technique can be used to evaluate the change in propaga-
tion constant due to bending.

The bent fiber, as illustrated in Fig. 2a, lies on the x-y
plane. Define a complex number Z = x + iy, and a complex
function

=t = BlZ
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which maps every point on the x-y plane onto a point in the
u-v plane. Under this transformation, a circular annulus as
shown in Fig. 2a will be transformed into a straight section as
shown in Fig. 2b. The equation which describes wave propaga-
tion in the u-v plane is obtained by applying a similar coordi-
nate transformation, Eq. (2), on the wave Eq. (1), and results
in

ﬂ+ﬂ+(ﬂ +k2n2w> (922 =0 (@
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27




On the original x-y plane, the wave propagates along the
circular arc of the bent fiber governed by the wave equation (1).
On the transformed u-v plane, the wave propagates along the v
direction of the transformed straight fiber, governed by the
transformed wave equation (4). The factor |dZ/dw]|? can be
easily evaluated from Eq. (2):

{ & ‘ = exp(u/R) )

Not unexpectedly, as the bend radius R goes to oo, [dZ/dw|
goes to 1 and Eq. (4) is the same as that for a straight fiber,
resulting in mode solutions given in Eq. (2).

IV. Modification of Index Profile Due to
Bending Stress

The conformal transformation technique illustrated above
takes care of the geometric factor due to bending. However,
there is a material factor due to the stress and strain induced in
the bent fiber. Obviously, when a fiber is bent, the inner part
is compressed and the outer part rarefied. We can assume that
at the mean radius of bending R (along the axis of the bent
fiber) the density of the fiber material is unchanged, and that
the local density of the fiber material is inversely proportional
to R, the local radius of bending.

To calculate the variation of the refractive index due to a
variation in fiber material density, we use the Clausius-Mosotti
relation (Ref. 8) for the refractive index of dense material:

n =1+ ——s ©)

where n = refractive index, V is the number of atoms/unit
volume of the medium, and « is the atomic polarizability. N is
inversely proportional to the local radius of curvature R:

N =N N

0
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where N, is the material density of the fiber without bending,
which corresponds to a refractive index n,, of about 1.5:

2 Nooc 2
ry = 1+ ———W =~ (1.5) (8)
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3
The refractive index at a point in the fiber where the radius

of bending is R =R + p is given by substituting Eq. (7) into
(6), expanding in a Taylor series, and assuming p <<R:
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Using the actual numerical values,
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where it is understood that n, = n inside the core and

Ry = Mg, inside the cladding.

core

Since the conformal transformation Eq. (3) transforms the
radius p into the u-coordinate, Eq. (10) can be substituted
directly into the wave equation (4)in the transformed u- plane:
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V. Perturbation Calculation of the
Propagation Constant

As mentioned at the end of Section III, when the bending
radius R is large, |dZ|dw| will be very close to 1, and we
can assume that the transverse mode profiles themselves are
not significantly modified. We can, however, calculate the
change in propagation constant of each mode due to bending.
Perturbation theory gives the following first order corrections
88, to the propagation constant §, of the /th mode
(Appendix):

o(67) = ¥ / w,P(%Zv;
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where ¥, is the /th transverse mode profile as given in Eq. (2),
|dZ/dwl is given in Eq.(5), and n?(u) in Eq. (10). The area
integral of Eq. (12) is evaluated over the cross section A of the
fiber, namely the uz plane. Substitution for the various quanti-
ties in Eq. (12) yields
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In the following, we shall compute the change in propagation
constant in single-mode fibers, using the above Eq. (13).

Only one mode propagates in a single-mode fiber: the HE,
mode. This mode is circularly symmetric, and is given by

Eq. (2) with I = 0. Moreover, it can be very closely approxi-
mated by a single Gaussian function (Ref. 9) to within 1%

error:
=i- —2—-—'"2/[72
b\/;e (14

where the mode width b is given by

Vo 9)
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a is the radius of the fiber core, V is the normalized frequency

1/2 2 \?
V= 2 _ 2 2
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and A is the free space wavelength. Substituting Eq. (14) into
Eq. (13) gives
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The fractional change in the propagation constant is thus pro-
portional to the square of the ratio of mode width b to bend-
ing radius R. According to Eq. (15), the width b of the funda-
mental mode is approximately equal to the core radius, which
is about 5 um for single-mode fiber. Eq. (21) can thus be
rewritten as

3B~ yx 10-8<—-——_ ! )2 (22)
B R (in cm)

A bending radius of, say, 4 cm will thus cause a change in
the propagation constant of 1 part in 108 in single-mode
fibers.
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VI. Conclusion

Measurements on an experimental multimode fiber link
indicate that fiber-optics is the most appropriate means for
transmitting time and frequency standards. The above calcula-
tions indicate that single-mode fibers can be very insensitive to
bending perturbations. However, the problem still remains as
to how to efficiently couple the laser source to a single-mode
fiber in a convenient, compact and noncritical way. With very
tight focusing and critical alignments, a coupling coefficient of

over 50% has been achieved (Ref. 10). However, typical cou-
pling loss in actual single-mode fiber systems amounts to
10 dB or more (Ref. 11), compared to an easily achieved 3-dB
coupling loss in multimode fiber systems. The type of lasers
used is also crucial in determining the coupling coeffi¢ient.
Since the mode in single-mode fibers is symmetric, a laser with
a symmetric output field would facilitate coupling. Means of
achieving noncritical coupling into a single-mode fiber (such as
tapers) are currently under investigation. Also under investiga-
tion are means to reduce moding effects in multimode fibers.
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CLADDING REFRACTIVE INDEX PROFILE

Fig. 1. Cross section of a step index optical fiber

(o) (b)

Fig. 2 Top view of a bent (2a) and a transformed straight (2b)
fiber section
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Appendix

Perturbation Analysis of a Bent Optical Fiber

The perturbation formula Eq. (12) is derived here. The
equation that describes wave propagation in straight fiber is

Eq. (4)

2y +aZT"b +(ﬂ +k2n(2)gb) =0 (A-D)
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Propagation is in the v direction (Fig. 2b); hence the factor is
¢’ where B is the propagation constant. With this, A-1

becomes
2
( 0% (A2)
u?  9z2

+k2ng)w = g2y
or

HYy = gy (A-3)
where the operator H is as defined from (A-2) and (A-3).
For a bent fiber, the wave equation becomes (Eq. 11)

%y 3%y (3% 20 azp _
+ +(av2+kn(u)¢ ‘dw =0
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Assuming a propagation constant isf,in this case we can write

2y, (3 LN W] 5y o
or
HY =8Y (A-6)
where
L
H' = > +(az2 +k2n2(u)> Id | (A7
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If the bending radius is large, H ' is not very different from H,
and we can write

H'=H+H, (A-8)
where H, is “small” compared to H, and §2 =42 + §(8?),
where 8(82) represents a small correction to the original g2

The problem now is in the standard form of the perturbation
theory (Ref. 12), and the correction to 2 is given by

56%) = f H 1y P a4
A

where the area integrai is evaluated over the cross section of
the mode . From Egs. (A-8), (A-7) and (A-2) we have

- 1) + k2 (n2 () % 2—n§)

(A-10)

Now, since a mode can be interpreted as plane waves

bouncing along the waveguide walls at grazing angles, the field

variation in the transverse direction is much smaller than a
wavelength, and thus

(A-9)

H

, SH-H

a2 dz|?
aw

2
L Ky
0z2

(A-11)

H | can thus be approximated to

_ dz|?
H =k (n2(u) Tl - ng) (A-12)

Substituting this into Eq. (A-9) gives Eq. (12).




